REPOSITORY_LONGNAME

Recent Submissions

  • Item
    Test Item
    (2024)
  • Publication
    Stratigraphy, petrology, and geochemistry of the Spurr Volcanic Complex, eastern Aleutian Arc, Alaska
    (1987-12) Nye, Christopher J.
    The Spurr Volcanic Complex (SVC) is a calcalkaline, medium-K, sequence of andesites erupted over the last quarter of a million years by the easternmost currently active volcanic center in the Aleutian Arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58-60% SiO₂), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent Bezymianny-type avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) was emplaced in the caldera. Both the ashflows and dome are made of acid andesite more silicic than any analyzed lavas from the ancestral Mt. Spurr (60-63% SiO₂), yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53-57% SiO₂) erupted during and after dome emplacement, forming proto-Crater Peak and Crater Peak. Hybrid pyroclastic flows and lavas were also produced. Proto-Crater Peak underwent glacial dissection prior to the formation of Crater Peak in approximately the same location. The vents for the silicic and mafic lavas are in the center and in the breach of the 5 by 6 km horseshoe shaped caldera, respectively, and are less than 4 km apart. Late Holocene eruptive activity is restricted to Crater Peak, and magmas continue to be relatively mafic and derived from deep within the crust. SVC lavas are plag ± ol + cpx ± opx + mt bearing. All post-caldera units contain small amounts of high AL₂O₃, high alkali pargasite, and Proto-Crater Peak and Crater Peak lavas contain abundant pyroxenite and anorthosite clots presumably derived from an immediately pre-existing magma chamber. Ranges of mineral chemistries within individual samples are often nearly as large as ranges of mineral chemistries throughout the SVC suite, suggesting that magma mixing is common. SVC lavas are unlike experimentally produced cotectic liquids and are thus unlikely to be related to each other by fractional crystallization. Magmatic evolution must instead be controlled in large part by crustal assimilation. Flat Y-SiO₂ and Nb-SiO₂ trends and Rb enrichment beyond that which can be reasonably modeled by fractional crystallization also suggest extensive assimilation of lower crust, bulk upper crust, or partial melts of local batholithic material. Since at least the mid-Holocene there has been no shallow, silicic magma chamber at the SVC. This increases the expectation that the low resistivity layer described by Turner and Wescott (1986) is a highly conductive layer of bedrock, such as a thick, altered tuff.
  • Publication
    The determination of the diurnal variation of the auroral belt by radio means
    (Geophysical Institute at the University of Alaska Fairbanks, 1965-09) Bates, Howard F.
    Backscatter echoes in the high frequency portion of the radio spectrum exhibit a systematic southward movement in the evening and northward in the morning. Typically, the scattering belt lies about 78°N geomagnetic latitude during the day, and moves south to 65 to 70° at night. The extent of the southward movement correlates strongly with geomagnetic activity and, to a lesser degree, local time. No significant difference was found between summer and winter diurnal variations of the scattering belt. The scattering belt has been found to include the optical auroral belt; thus, it is concluded that there is no significant difference in the diurnal variation in the position of the summer and winter auroral belts for given levels of magnetic disturbance. The scattering belt was present on the College magnetic meridian during most of the two and one-half years’ observations. This is interpreted as showing the optical auroral belt existed most of the time somewhere on the College meridian, and hence on others as well. Thus, the auroral belt during the solar activity minimum period existed as a more or less closed curve around the geomagnetic pole. When the latitudinal effects are considered versus local time, the auroral belt takes the form of an oval curve, the northernmost portion approximately on the noon meridian. The size of the oval at any time is proportional to the size of the disturbance. The scattering belts as determined from simultaneous College and Thule backscatter soundings over approximately reciprocal paths generally coincided. This result shows that simultaneous soundings in four to eight directions from the magnetic pole could be used to map the auroral belt completely around the earth at any given time.
  • Publication
    Ice fog studies in Alaska : a survey of past, present and proposed research
    (Geophysical Institute at the University of Alaska Fairbanks, 1969-03) Weller, Gunter E.
  • Publication
    Whalesong 2022-12-01 (v.42 no.5)
    (University of Alaska Southeast, 2022-12-12) Flunker, Mike; Schultz, AJ; Stewart, Lucas; Akagi, Teigan; Fruechtnict, Liz; Kline, Carrie; Moler, Shaelene; Brend, Olive

Communities in REPOSITORY_SHORTNAME

Select a community to browse its collections.